Метаболизм мозга. Восстановление углеводного обмена

Цель_ изучения темы : уметь использовать знания об особенностях обмена углеводов в различных органах для 0бъяснения биохимических нарушений возникающих в этих органах при некоторых заболеваниях.

Основные вопросы темы.

1. Особенности обмена углеводов в скелетных мышцах.

2. Особенности обмена углеводов в мозге.

3. Особенности метаболизма углеводов в эритроцитах.

4. Особенности метаболизма углеводов в печени.

5. Основные пути метаболизма в жировой ткани.

Вопросы для самоподготовки.

1. Значение углеводов для мышц.

2. Перечислите пути метаболизма глюкозы в мышцах.

3. Значение для мышц гликолитического окисления глюкозы.

4. Особенности реакции фосфорилирования глюкозы в мышцах.

5. Нарисуйте схему анаэробного гликолиза.

6. Назовите ключевые ферменты гликолиза.

7. Назовите метаболиты (субстраты), регулирующие активность ферментов гликолиза.

8. С накоплением какого метаболита связано возникновение чувства усталости (утомления) в мышцах?

9. Какие различия существуют между сердечной и скелетной мышцами в использовании пирувата?

10. Перечислите все изоферменты ЛДГ. По каким свойствам отличаются эти изоферменты?

11 Особенности обмена гликогена в мышцах.

12. Значение глюкозы для мозга.

13. Перечислите пути метаболизма глюкозы в мозге.

14. Какова интенсивность цикла лимонной кислоты в мозге?

15. Использование промежуточных продуктов цикла лимонной кислоты в тканях мозга.

16. Значение глюкозы для эритроцитов.

17. Перечислите пути метаболизма глюкозы в эитроцитах.

18. Чем обусловлено протекание в эритроцитах анаэробного гликолиза?

19. Использование НАДН+ , образовавшейся в процессе гликолиза в эритроцитах.

20. Функции 2,3-дифосфоглицерата в эритроцитах.

21. Последствия снижения концентрации 2,3-дифосфоглицерата.

22. Дефект какого фермента приводит к снижению концентрации 2,3-дифосфоглицерата?

23. Дефект какого фермента приводит к повышению концентрации 2,3-дифосфоглицерата?

24. К каким последствиям приводит повышение концентрации 2,3-дифосфоглицерата?

25. Значение пентозофосфатного пути окисления глюкозы для эритроцитов.

26. Использование НАДФН+ , в эритроцитах.

27. Перечислите пути метаболизма глюкозы в печени.

28. Значение глюконеогенеза, протекающего в печени, для организма.

29. Назовите ключевые ферменты глюконеогенеза.

30. Назовите процессы, метаболиты которых используются для синтеза глюкозы.

Задачи и упражнения для самоподготовки .

1. Описано заболевание, при котором в печени откладывается большое количество гликогена. В печени таких больных отсутствует фермент глюкозо-6фосфатаза. Активность всех остальных ферментов гликолиза нормальная. Как изменится содержание глюкозы, пирувата, лактата в крови при этом заболевании?

2. Описано два типа заболеваний, для одного из которых характерным является дефект фосфорилазы мышц, а для другого - фосфорилазы печени. Назовите клинические симптомы и биохимические тесты, с помощью которых можно дифференцировать эти заболевания.

3. Описано два типа заболеваний, одно из которых характеризуется дефектом фосфорилазы мышц, а другое - дефектом фосфофруктокиназы мышц. Какие симптомы характерны для этих типов заболеваний? Как их можно коррегировать?

4. Описано много генетически обусловленных форм гемолитических анемий, характеризующихся дефектом ферментов анаэробного гликолиза в эритроцитах. Как изменится сродство гемоглобина к кислороду при дефекте: а) гексокиназы, б) пируваткиназы?

5. Нарушение окислительного фосфорилирования приводит (при ишемии миокарда) к снижению содержания в кардиомиоцитах АТФ. Как это снижение влияет на интенсивность гликолиза и гликогенолиза?

Контрольные вопросы и тесты для самопроверки усвоения материала.

1. Нарисуйте схему утилизации лактата, образующегося в мышцах.

2. Зарисуйте схему метаболизма глюкозы в мозге.

3. Зарисуйте схему метаболизма глюкозы в эритроцитах.

4. Нарисуйте схему метаболизма глюкозы в печени.

5. Может ли синтез глюкозы в клетках печени идти в условиях дефицита в них кислорода? Ответ обоснуйте.

6. Активность глюкокиназы в печени не регулируется накоплением глюкозо-6-фосфата. Какое значение это имеет для организма?

7. Укажите органы и ткани, в которых анаэробный гликолиз не протекает:

1. Жировая ткань.

2. Сердце.

5. Печень.

8. Укажите, в каких органах и тканях особенно активен пентозофосфатный путь окисления глюкозы:

1. Жировая ткань

2. Печень.

5. Эритроциты.

9. Укажите метаболические пути обмена глюкозо-6 фосфата, протекающие в жировых депо:

1. Глюконеогенез.

2. Гликогенез.

3. Гликолиз анаэробный.

4. Гликолиз аэробный

5. Пентозофосфатный путь

7. Образование свободной глюкозы

10. Назовите ферменты, катализирующие превращение глюкозы в глюкозо-6-фосфат в ткани печени:

1. Глюкозо-6-фосфатаза.

2. Глюкокиназа.

3. Глюкозо-6-фосфатдегидрогеназа.

4. Гексокиназа.

5. Фофсфоглюкомутаза.

11. Назовите метаболические пути обмена глюкозо-6фосфата, протекающие в гепатоцитах:

1. Глюконеогенез.

2. Гликогенез.

3. Гликолиз анаэробный.

4. Гликолиз аэробный.

5. Пентозофосфатный путь.

6. Образование свободной глюкозы

12. Укажите метаболические пути обмена глюкозо-6-фосфата, протекающие в тканях мозга:

1. Глюконеогенез.

2. Гликогенез.

3. Гликолиз анаэробный.

4. Гликолиз аэробный.

5. Пентозофосфатный путь.

7. Образование свободной глюкозы.

13. Укажите метаболические пути обмена глюкозо-6 фосфата в мышечной ткани:

1.Гликогенез.

2. Гликолиз анаэробный.

3. Гликолиз аэробный.

4. Пентозофосфатный путь.

5. Образование свободной глюкозы

14. Перечислите ферменты, генетический дефект синтеза; которых приводит к развитию гемолитической анемии.

15. Заполните таблицу:

Название процесса

Углеводы - органические соединения, состоящие из углерода, водорода и кислорода. Роль углеводов для организма определяется их энергетической функцией. Углеводы (в виде глюкозы) служат непосредственным источником энергии почти для всех клеток организма. В организме содержание углеводов составляет около 2% сухой массы. Особенно велика роль углеводов для клеток головного мозга. Глюкоза обеспечивает энергетическую базу мозговой ткани, она необходима для дыхания мозга, для синтеза макроэргических соединений и медиаторов, без которых не может функционировать нервная система. Велика также роль глюкозы для мышечной ткани, особенно в период активной мышечной деятельности, поскольку мышцы в конечном итоге функционируют благодаря анаэробному и аэробному распаду углеводов.

Углеводы выполняют в организме роль резервного энергетического вещества, легко мобилизуемого в соответствии с потребностями организма. Таким резервным углеводом является гликоген. Его присутствие помогает организму сохранить постоянство углеводного питания тканей даже при условии длительных перерывов в поступлении пищи. Углеводы играют важную пластическую роль, входя в состав цитоплазмы и субклеточных образований: костей, хрящей и соединительной ткани. Являясь обязательной составной частью биологических жидкостей организма, углеводы играют немалую роль в процессе осмоса. Наконец, они входят в сложные соединения, выполняющие в организме специфические функции (нуклеиновые кислоты, мукополисахариды и др.), необходимые для обезжиривания химических веществ в печени и для иммунологической защиты организма.

Основная часть углеводов (около 70%), поступающих с пищей, окисляется до СО 2 и Н 2 О, покрывая тем самым значительную часть энергетических потребностей организма. Около 25-28% вводимой с пищей глюкозы превращается в жир и только 2 из 5% пищевой глюкозы синтезирует гликоген - резервный углевод организма.

При уменьшении уровня сахара в крови (гипогликемия) наблюдается падение температуры тела и мышечная слабость.

Основные этапы обмена углеводов . Углеводный обмен - процесс усвоения (синтеза, распада и выведения) клетками и тканями организма углеводов и углеводсодержащих веществ. Обмен углеводов состоит из следующих фаз: 1) переваривание углеводов в желудочно-кишечном тракте; 2) всасывание моносахаридов в кровь; 3) межуточный обмен углеводов; 4) ультрафильтрация и обратное всасывание глюкозы в почках.

Переваривание углеводов . Расщепление полисахаридов пищи начинается в полости рта, под действием фермента слюны - амилазы. Действие этого фермента слюны продолжается и в желудке до тех пор, пока под влиянием кислого желудочного сока не произойдет инактивация фермента. Дальнейшее расщепление углеводов продолжается в 12-перстной кишке под действием ферментов поджелудочной железы и собственно кишечных ферментов. Углеводы расщепляются до стадии глюкозы - ферментом мальтазой. Этот же фермент расщепляет дисахарид сахарозу до глюкозы и фруктозы. Принятая с пищей лактоза под действием фермента лактазы расщепляется до глюкозы и галактозы. Таким образом, в результате ферментативных процессов углеводы пищи превращаются в моносахариды: глюкозу, фруктозу и галактозу.

Всасывание углеводов . Моносахариды всасываются, главным образом, в тонком кишечнике через ворсинки слизистой оболочки и поступают в кровь воротной вены. Скорость всасывания моносахаридов различна. Если принять скорость всасывания за 100, то соответственная величина для галактозы будет 110, для фруктозы - 43. Всасывание глюкозы и галактозы происходит в результате активного транспорта, то есть с затратой энергии и при участии специальных транспортных систем. Активность всасывания этих моносахаридов усиливается транспортом Nа + через мембраны эпителия.

Всасывание глюкозы активируется гормонами коры надпочечников, тироксином, инсулином, а также серотонином и ацетилхоллином. Адреналин наоборот подавляет всасывание глюкозы из кишечника.

Межуточный обмен углеводов . Всосавшиеся через слизистую оболочку тонкого кишечника моносахариды переносятся током крови в головной мозг, печень, к мышцам и другим тканям, где они претерпевают различные превращения (рис. 23).

Рис. 23. Превращение углеводов в обмене веществ (по: Андреева и др., 1998)

1. В печени из глюкозы синтезируется гликоген, и этот процесс называется гликогенезом. В случае необходимости гликоген вновь распадается до глюкозы, то есть происходит гликогенолиз. Образовавшаяся глюкоза выделяется печенью в общий ток кровообращения.

2. Часть поступившей в печень глюкозы может подвергнуться окислению с выделением энергии, необходимой организму.

3. Глюкоза может стать источником синтеза неуглеводов, в частности белков и жиров.

4. Глюкоза может быть использована для синтеза некоторых веществ, необходимых для особых функций организма. Так, из глюкозы образуется глюкуроновая кислота - продукт, необходимый для осуществления обезвреживающей функции печени.

5. В печени может происходить новообразование углеводов из продуктов распада жиров и белков - глюконеогезе.

Глюкогенез и глюконеогенез взаимосвязаны и направлены на поддержание постоянства уровня сахара в крови. Печень человека выделяет в кровь в среднем 3,5 мг глюкозы на 1 кг массы в минуту или 116 мг на 1 м 2 поверхности тела. Способность печени регулировать процессы углеводного обмена и поддерживать уровень сахара в крови называется гомеостатической функцией, в основе которой лежит способность печеночной клетки изменять свою активность в зависимости от концентрации сахара в притекающей крови.

В углеводном обмене большой удельный вес занимает мышечная ткань. Мышцы, особенно в активном состоянии захватывают из крови большое количество глюкозы. В мышцах так же, как и в печени, синтезируется гликоген. Распад гликогена - один из источников энергетики мышечного сокращения. Мышечный гликоген расщепляется до молочной кислоты и этот процесс называется гликолизом . Затем часть молочной кислоты поступает в кровь и поглощается печенью для синтеза гликогена.

Головной мозг содержит очень большие запасы углеводов, поэтому для полноценной функции нервных клеток необходим постоянный приток в них глюкозы. Мозг поглощает около 69% глюкозы, выделяемой печенью (Држевецкая , 1994). Поступившая в мозг глюкоза преимущественно окисляется, а небольшая часть ее превращается в молочную кислоту. Энергетические расходы мозга почти исключительно покрываются за счет углеводов, и это отличает мозг от всех других органов.

Ультрафильтрация и реабсорбция глюкозы . На первом этапе процесса мочеобразования, то есть во время ультрафильтрации в клубочковом аппарате, глюкоза переходит из крови в первичную мочу. В процессе дальнейшей реабсорбции в канальцевой части нефрона глюкоза вновь возвращается в кровь. Обратное всасывание глюкозы представляет собой активный процесс, происходящий с участием ферментов эпителия почечных канальцев.

Таким образом, почки участвуют в поддержании постоянства сахара во внутренней среде организма.

Возрастные особенности углеводного обмена . У плода на единицу массы тела ткани получают меньше кислорода, чем после рождения, что обусловливает преобладание анаэробного пути распада углеводов над аэробным. Поэтому в крови плода уровень молочной кислоты выше, чем у взрослых людей. Оказанная особенность сохраняется и в период новорожденности, и только к концу первого месяца у ребенка существенно увеличивается активность ферментов аэробного распада углеводов. Для новорожденного характерна гипогликемия (всего 2,2-2,5 моль/л, то есть вдвое меньше, чем у взрослых), поскольку во время родов резко истощаются запасы гликогена в печени - единственного источника глюкозы в крови.

Углеводы в организме ребенка являются не только основным источником энергии, но в виде глюкопротеидов и мукополисахаридов играют важную пластическую роль при создании основного вещества соединительной ткани клеточных мембран (Рачев и др., 1962).

Для детей характерна большая интенсивность углеводного обмена.
В детском организме ослаблено образование углеводов из белков и жиров (гликогенолиз), так как рост требует усиленного расхода белковых и жировых запасов организма. Углеводы в детском организме откладываются в мышцах, печени и других органах в незначительном количестве. В грудном возрасте на 1 кг веса ребенок должен получать 10-12 г углеводов, за счет которых покрывается около 40% всей энергетической потребности. В последующие годы количество углеводов колеблется от 8-9 до 12-15 г на 1 кг веса, причем за их счет покрывается уже до 50-60% всей калорийной потребности.

Суточное количество углеводов, которое дети должны получать с пищей, значительно увеличивается с возрастом: от 1 года до 3 лет - 193 г, от 4 до 7 лет - 287,9 г, от 8 до 13 лет - 370 г, от 14 до 17 лет - 470 г, что почти равно норме взрослого (по данным института питания РАМН).

Высокая потребность в углеводах у растущего ребенка отчасти объясняется тем обстоятельством, что рост тесно связан с процессами гликолиза, ферментативным распадом углеводов, сопровождающихся образованием молочной кислоты. Чем моложе ребенок, тем быстрее происходит его рост и больше интенсивность гликолетических процессов. Так, в среднем у ребенка на 1-м году жизни гликолитические процессы на 35% интенсивнее, чем у взрослых.

Представление об особенностях углеводного обмена у детей дает пищеварительная гипергликемия. Максимальный уровень сахара в крови большей частью отличается уже через 30 минут после приема пищи. Через 1 час кривая сахара начинает снижаться, и приблизительно через 2 часа уровень сахара в крови возвращается к исходному уровню или даже незначительно снижается.

Особенностью организма детей и подростков является менее совершенный углеводный обмен в смысле возможности быстрой мобилизации внутренних углеводных ресурсов организма и особенно поддержания углеводного обмена при выполнении физической нагрузки. При сильном утомлении во время продолжительных спортивных соревнований прием нескольких кусочков сахара улучшает состояние организма.

У детей и подростков при выполнении различных физических упражнений наблюдалось как правило, снижение сахара в крови, в то же время, как у взрослых, выполнение тех же гимнастических упражнений сопровождалось в среднем повышением уровня сахара в крови (Яковлев , 1962).

Гликоген - основной резервный полисахарид в клетках животных Гликоген представляет собой разветвленный
гомополисахарид, мономером которого является
глюкоза. Остатки глюкозы соединены в линейных
участках α-1,4-гликозидными связями, а в местах
разветвления - связями α-1,6. Молекула гликогена более
разветвлена, чем молекула крахмала, точки ветвления
встречаются через каждые 8-10 остатков глюкозы.
Разветвленная структура гликогена обеспечивает
большое количество концевых мономеров, что
способствует работе ферментов, отщепляющих или
присоединяющих мономеры, так как эти ферменты
могут одновременно работать на многих ветвях
молекулы гликогена.

Гликоген депонируется главным образом в печени и скелетных мышцах и хранится в цитозоле клеток в форме гранул. Гранулы гликогена плохо рас

Гликоген депонируется главным
образом в
печени и скелетных мышцах и
хранится в цитозоле клеток в форме
гранул. Гранулы гликогена плохо
растворимы в воде и не влияют на
осмотическое давление в клетке. Это
обстоятельство объясняет, почему в
клетке депонируется гликоген, а не
свободная глюкоза. С гранулами
связаны и некоторые ферменты,
участвующие в обмене гликогена, что
облегчает взаимодействие ферментов с
субстратами.

Синтез гликогена

Гликоген синтезируется в период
пищеварения (абсорбтивный
период: 1-2 часа после приема
углеводной пищи) в основном в
печени и в мышцах. Этот процесс
требует затрат энергии, так
включение одного мономера в
полисахаридную цепь сопряжено с
расходованием АТФ и УТФ
(реакции 1 и 3).
Образованная УДФ-глюкоза
(реакция 3) является субстратом
для гликогенсинтазы, которая
переносит остаток глюкозы
(реакция 4) на праймер
(олигосахарид из 4-8 остатков
глюкозы) и соединяет его α-1,4глюкозной связью.

Синтез гликогена

Когда длина синтезируемой цепи
увеличивается на 11-12 остатков
глюкозы, фермент ветвления глюкозил- 1,4-1,6-трансфераза
(реакция 5) образует боковую цепь
путем переноса фрагмента из 5-6
остатков глюкозы на внутренний
остаток глюкозы, соединяя его α-1,6гликозидной связью. Затем
удлинение цепей и ветвление их
повторяется много раз.
В итоге образуется сильно
разветвленная молекула,
содержащая до 1млн глюкозных
остатков.


Мобилизация (распад) гликогена происходит в
интервалах между приемами пищи (постабсорбтивный
период) и ускоряется во время физической работы. Этот
процесс осуществляется путем последовательного
отщепления остатков глюкозы, в виде глюкозо-1фосфата (реакция 1) с помощью гликогенфосфорилазы,
расщепляющей α-1,4-гликозидные связи. Этот фермент
не расщепляет α-1,6-гликозидные связи в местах
разветвлений, поэтому необходимы еще два фермента,
после действия которых остаток глюкозы в точке
ветвления освобождается в форме свободной глюкозы
(реакции 2 и 3). Гликоген распадается до глюкозо-6фосфата и свободной глюкозы без затрат АТФ.

Мобилизация (распад) гликогена

Мобилизация гликогена в печени отличается от таковой в
мышцах одной реакцией (реакция 5), обусловленной
наличием в печени фермента глюкозо-6-фосфатазы.
Присутствие в печени глюкозо-6-фосфатазы обеспечивает
главную функцию гликогена печени - высвобождение
глюкозы в кровь в интервалах между едой для
использования ее другими органами.
Таким образом, мобилизация гликогена печени
обеспечивает поддержание глюкозы в крови на постоянном
уровне 3,3-5,5 ммоль в постабсорбтивном периоде. Это
обстоятельство является обязательным условием для
работы других органов и особенно мозга. Через 10-18 часов
после приема пищи запасы гликогена в печени
значительно истощаются, а голодание в течение 24 часов
приводит к полному его исчерпанию.

10. Мобилизация (распад) гликогена

11.

Переключение процессов синтеза и
мобилизации гликогена в печени и
мышцах происходит при переходе из
абсорбтивного состояния в
постабсорбтивное и из состояния покоя
в режим физической работы. В
переключении этих метаболических
путей в печени участвуют инсулин,
глюкагон и адреналин, а в мышцах инсулин и адреналин.

12.

Влияние этих гормонов на синтез и распад гликогена
осуществляется путем изменения в противоположном
направлении активности двух ключевых ферментов:
гликогенсинтазы и гликогенфосфорилазы с помощью их

13.

Первичным сигналом для синтеза инсулина
и глюкагона является изменение
концентрации глюкозы в крови. Инсулин и
глюкагон постоянно присутствуют в крови,
но при переходе из абсорбтивного периода в
постабсорбтивный изменяется их
относительная концентрация. Отношение
концентраций инсулина и глюкагона в крови
называют инсулин-глюкагоновым индексом,
в зависимости от которого изменяется
направление метаболизма гликогена в
печени.

14.

Регуляция метаболизма гликогена
в печени
В период пищеварения концентрация
глюкозы в крови повышается до 10-12
ммоль/л, и это является сигналом для
синтеза и секреции инсулина.
Концентрация инсулина
увеличивается, и его влияние
является преобладающим. Инсулинглюкагоновый индекс в этом случае
повышается.

15. Регуляция метаболизма гликогена в печени

Под влиянием инсулина происходит:
ускорение транспорта глюкозы в клетки
инсулинзависимых мышечной и жировой
тканей;
изменение активности ферментов путем
фосфорилирования и дефосфорилирования.
Так, например, инсулин активирует
фосфодиэстеразу и снижает концентрацию
цАМФ в клетке. Кроме этого, инсулин
активирует фосфопротеинфосфатазу гранул
гликогена, которая дефосфорилирует
гликогенсинтазу и переводит ее в активное
состояние. Дефосфорилирование
гликогенфосфорилазы под влиянием
фосфопротеинфосфатазы, напротив, приводит
к ее инактивации;
изменение количества некоторых ферментов
путем индукции и репрессии их синтеза. В
печени инсулин индуцирует синтез
глюкокиназы, ускоряя тем самым
фосфорилирование глюкозы.
Все эти свойства инсулина приводят к
повышению скорости синтеза гликогена.

16. Под влиянием инсулина происходит:

Регуляция синтеза и распада гликогена в печени
глюкагоном и адреналином
В постабсорбтивном периоде
инсулин-глюкагоновый индекс
снижается и решающим является
влияние глюкагона, который
синтезируется в ответ на снижение
концентрации глюкозы в крови и
стимулирует распад гликогена в
печени. Механизм действия
глюкагона заключается в том, что
он «запускает»
аденилатциклазный каскад
реакций, приводящий к активации
гликогенфосфорилазы и
ингибированию гликогенсинтазы.
1 - глюкагон и адреналин взаимодействуют со специфическими мембранным! рецепторами. Комплекс
гормон-рецептор передает сигнал через аденилатциклазную систему на протеинкиназу А, переводя ее в
активное состояние;
2 - протеинкиназа А фосфорилирует и активирует киназу фосфорилазы;
3 - киназа фосфорилазы фосфорилирует гликогенфосфорилазу, переводя ее ι активную форму;
4. - протеинкиназа А фосфорилирует также гликогенсинтазу, переводя ее в неак тивное состояние;
5 - в результате ингибирования гликогенсинтазы и активации гликогенфосфорилазы ускоряется распад
гликогена

17. Регуляция синтеза и распада гликогена в печени глюкагоном и адреналином

Инозитолфосфатный механизм регуляции синтеза и
распада гликогена в печени адреналином и Са2+
Адреналин имеет сходный с глюкагоном
механизм действия на клетки печени.
Но возможно включение и другой
эффекторной системы передачи сигнала
в клетку печени. Какая система
передачи сигнала в клетку будет
использована, зависит от типа
рецепторов, с которыми
взаимодействует адреналин. Так,
присоединение адреналина к β2рецепторам клеток печени приводит в
действие аденилатциклазную систему.
Взаимодействие же адреналина с αjрецепторами «включает»
инозитолфосфатный механизм
трансмембранной передачи
гормонального сигнала. Результатом
действия обеих систем является
фосфорилирование ключевых
ферментов, изменение их активности и
переключение синтеза гликогена на его
распад.
1 - взаимодействие адреналина с α1-рецептором передает сигнал через инозитолфосфатную систему. Это
сопровождается активацией фосфолипазы С, мобилизацией Сa2+ из ЭР и активацией протеинкиназы С (ПКС).
2 - протеинкиназа С фосфорилирует гликогенсинтазу и переводит ее в неактивное состояние.
3 - комплекс 4Са2+-кальмодулин активирует киназу фосфорилазы и кальмодулинзависимые протеинкиназы.
4 - киназа фосфорилазы фосфорилирует гликогенфосфорилазу и тем самым ее активирует.
5 - гликогенфосфорилаза катализирует первую реакцию распада гликогена

18. Инозитолфосфатный механизм регуляции синтеза и распада гликогена в печени адреналином и Са2+

Регуляция метаболизма гликогена в мышцах
Активация адреналином мышечной
гликогенфосфорилазы происходит
несколько иначе, так как распад
гликогена в скелетных мышцах
стимулируется мышечными
сокращениями
1 - аллостерическая активация
гликогенфосфорилазы. В процессе
мышечного сокращения происходит
превращение АТФ в АМФ, который
является аллостерическим активатором
дефосфорилированной и малоактивной
формы гликогенфосфорилазы;
2 - нервный импульс инициирует
высвобождение из
саркоплазматического ретикулума ионы
Са2+, образующие комплекс с
кальмодулином, способный
активировать киназу фосфорилазы,
которая в свою очередь фосфорилирует
и активирует гликогенфосфорилазу;
3 - активация гликогенфосфорилазы
адреналином посредством
аденилатциклазной системы.

19. Регуляция метаболизма гликогена в мышцах

Значение регуляции обмена
гликогена.
При передаче гормонального сигнала через
внутриклеточные посредники происходит значительное его
усиление, поэтому активация фосфорилазы гликогена при
участии любой системы передачи сигнала в клетку печени
позволяет быстро получить большое количество глюкозы из
гликогена. Усиление гормонального сигнала в мышцах
имеет большое значение для обеспечения энергетическим
материалом интенсивной работы в условиях стресса,
например при бегстве от опасности.
При смене постабсорбтивного состояния на абсорбтивное или
по окончании мышечной работы вся система возвращается в
исходное состояние. Аденилатциклаза и фосфолипаза С
инактивируются, цАМФ разрушается фосфодиэстеразой, а
фосфопротеинфосфатаза вызывает переход всех
внутриклеточных ферментов «каскада» в
дефосфорилированную форму.

20.

Итак, регуляция скоростей
синтеза и распада гликогена в
печени поддерживает постоянство
концентрации глюкозы в крови
(3,3-5,5 ммоль/л).
Регуляция обмена гликогена в
мышцах обеспечивает
энергетическим материалом как
интенсивную работу мышц, так и
энергозатраты в состоянии покоя.

21. Значение регуляции обмена гликогена.

СИНТЕЗ
ГЛЮКОЗЫ ГЛЮКОНЕОГЕНЕЗ

22.

Глюконеогенез - это процесс синтеза
глюкозы из веществ неуглеводной
природы.
Субстратами глюконеогенеза являются:
1. пируват,
2. лактат,
3. глицерол,
4. аминокислоты.

23. СИНТЕЗ ГЛЮКОЗЫ - ГЛЮКОНЕОГЕНЕЗ

Важнейшей функцией
глюконеогенеза является
поддержание уровня глюкозы в
крови в период длительного
голодания и интенсивных
физических нагрузок.
Постоянное поступление
глюкозы в качестве источника
энергии особенно необходимо
для нервной ткани и
эритроцитов.

24.

Процесс протекает главным образом в печени и
менее интенсивно - в корковом веществе почек, а также в
слизистой оболочке кишечника.
Включение различных субстратов в глюконеогенез зависит
от физиологического состояния организма:
- лактат является продуктом анаэробного гликолиза в
эритроцитах, работающих мышцах и других тканях с
низким содержанием О2;
-
глицерол высвобождается при гидролизе жиров в жировой
ткани в постабсорбтивный период или при физической
нагрузке;
- аминокислоты образуются в результате распада белков
мышц и соединительной ткани и включаются в
глюконеогенез при длительном голодании или
продолжительной мышечной нагрузке.
Большинство реакций гликолиза и глюконеогенеза
являются обратимыми и катализируются одними и теми
же ферментами, что и гликолиз. Четыре реакции
глюконеогенеза необратимы.

25. Важнейшей функцией глюконеогенеза является поддержание уровня глюкозы в крови в период длительного голодания и интенсивных физических н

Схема гликолиза и глюконеогенеза

26.

Суммарное уравнение
глюконеогенеза
2 Пируват + 4 АТФ + 2 ГТФ +
+
2 (НАДН+Н) + 4 Н2О
1 Глюкоза + 4 АДФ + 2 ГДФ +
+
6 Н3РО4 + 2 НАДН

27. Схема гликолиза и глюконеогенеза

Глюкозолактатный цикл
или цикл Кори
Использование лактата в качестве субстрата в
глюконеогенезе связано с транспортом его в
печень и превращением в пируват

28. Суммарное уравнение глюконеогенеза

Особенности
обмена глюкозы в
различных тканях
и органах

29. Глюкозолактатный цикл или цикл Кори

Обмен углеводов в
печени
Одной из важнейших функций печени в
процессах обмена веществ является ее участие в
поддержании постоянного уровня глюкозы в
крови (глюкостатическая функция): глюкоза,
поступающая в избытке, превращается в
резервную форму, которая используется в
период, когда пища поступает в ограниченном
количестве.
Энергетические потребности самой печени, как и
других тканей организма, удовлетворяется за
счет внутриклеточного катаболизма
поступающей глюкозы.

30. Особенности обмена глюкозы в различных тканях и органах

Обмен углеводов в
печени
В печени катаболизм глюкозы представлен 2
процессами: 1) гликолитический путь
превращения 1 моль глюкозы в 2 моль лактата с
образованием 2 моль АТФ и
2) пентозофосфатный путь превращения 1 моль
глюкозы в 6 моль СО2 с образованием 12 моль
НАДФН. Оба процесса протекают в анаэробных
условиях, обе ферментативные системы
содержатся в растворимой части цитоплазмы,
оба пути требуют предварительного
фосфорилирования глюкозы.

31. Обмен углеводов в печени

Гликолиз обеспечивает энергией
клеточные реакции
фосфорилирования, синтез белка;
пентозофосфатный путь служит
источником энергии восстановления
для синтеза жирных кислот,
стероидов.

32. Обмен углеводов в печени

При аэробных условиях происходит сочетание гликолиза,
протекающего в цитоплазме и цикла лимонной кислоты с
окислительным фосфорилированием в митохондриях
достигается максимальноый выход энергии в 38 АТФ на 1
моль глюкозы. Фосфотриозы, образующиеся в процессе
гликолиза, могут быть использованы для синтеза глицерофосфата, необходимого для синтеза жиров. Пируват,
который образуется при гликолизе, может быть использован
для синтеза аланина, аспартата и других соединений, через
стадию образования оксалоацетата. В печени реакции
гликолиза могут протекать в обратном направлении и тогда
происходит синтез глюкозы путем глюконеогенеза. В
пентозофосфотном пути образуются пентозы, необходимые для
синтеза нуклеиновых кислот. В отличие от гликолиза
фосфоглюконатный путь необратим и здесь окисляется 1/3
глюкозы, 2/3 глюкозы окисляются по гликолитическому пути.

33. Обмен углеводов в печени

В печени протекают гликогенез и
гликогенолиз. Эти процессы
взаимосвязаны и регулируются как
внутри – так и внеклеточными
соотношениями между
поступлением и потреблением
глюкозы.

34. Обмен углеводов в печени

Обмен углеводов в мышцах
Цель мышечной клетки – наиболее
эффективно использовать
поступающую глюкозу для образования
АТФ, необходимого для осуществления
механической работы – сокращения. В
состоянии покоя значительные
количества глюкозы резервируются в
форме гликогена. Цитоплазма
мышечных клеток содержит в высоких
концентрациях ферменты гликолиза, а
изобилие митохондрий обеспечивает
эффективный распад продуктов
гликолиза через путь лимонной
кислоты и цепь переноса электронов.
Лишь в условиях крайнего утомления
эти аэробные процессы не справляются
с накоплением лактата.

35. Обмен углеводов в печени

Обмен углеводов в мышцах
В мышцах идет гликогенез, мышца осуществляет лишь немногие
синтетические функции. Ключевые ферменты глюконеогенеза в
мышцах отсутствуют, и глюконеогенез не идет. Для
восстановительных синтезов в мышце НАДФН не требуется, и
пентозофосфатный путь почти не функционирует.
Обмен углеводов в мышцах обеспечивает создание тканевых
запасов гликогена в состоянии покоя и использование этих
запасов, а также поступающей глюкозы при напряженной работе;
основные энергетические потребности всех типов мышц
удовлетворяются главным образом за счет окисления продуктов
обмена жиров. Ни медленно сокращающаяся гладкая мышечная
ткань, ни сердечная мышца не потребляют глюкозу в
значительной мере. Во время напряженной работы сердце
обеспечивает себя лактатом для окисления.

36. Обмен углеводов в мышцах

Фосфорилирование глюкозы в мышцах
происходит под дейстием гексокиназы, в
печени этот процесс катализируется
глюкокиназой. Эти ферменты отличаются по
Кm.
Кm≤ 0,1 ммоль/л гексокиназы значительно
ниже Кm = 10 ммоль/л глюкокиназы.
Фермент мышц – гексокиназа участвует во
внутриклеточной регуляции, т.е. этот
фермент будет фосфорилировать глюкозу
только до тех пор, пока глюкозо-6-ф
используется в мышцах для гликолиза или
образования гликогена.
Другое важнейшее различие между тканью
печени и мышцы состоит в отсутствии в
мышцах фермента глюкозо-6-фасфатазы.

37. Обмен углеводов в мышцах

Обмен углеводов в мозге
По сравнению со всеми органами тела функций мозга в
наибольшей степени зависит от обмена углеводов. Если в крови,
поступающей к мозгу, концентрация глюкозы становится вдвое
ниже нормальной, то в течение нескольких секунд наступает
потеря сознания, а через несколько минут – смерть. Для того
чтобы обеспечить освобождение достаточного количества энергии,
катаболизм глюкозы должен осуществляться в соответствии с
аэробными механизмами; об этом свидетельствует даже более
низкая чувствительность мозга к гипоксии, чем гипогликемии.
Метаболизм глюкозы в мозге обеспечивает синтез
нейромедиаторов, аминокислот, липидов, компонентов
нуклеиновых кислот. Пентозофосфатный путь функционирует в
небольшой мере, обеспечивая НАДФН для некоторых из этих
синтезов. Основной катаболизм глюкозы в ткани мозга протекает
по гликолитическому пути.
Гексокиназа мозга имеет высокое сродство к глюкозе, что
обеспечивает эффективное использование глюкозы мозгом.
Активность ферментов гликолиза велика.

38. Обмен углеводов в мышцах

Обмен углеводов в мозге
Высокая активность митохондриальных ферментов цикла
лимонной кислоты предотвращает накопление лактата в тканях
мозга; большая часть пирувата окисляется до Ацетил-КоА.
Небольшая часть Ацетил-КоА используется для образования
нейромедиатора ацетилхолина. Основное количество АцетилКоА подвергается окислению в цикле лимонной кислоты и дает
энергию. Метаболизм цикла Кребса используется для синтеза
аспартата и глутамата. Эти аминокислоты обеспечивают
обезвреживание аммиака в тканях мозга.
Мозг содержит мало гликогена (0,1% от общего веса); этот запас
расходуется очень быстро.
В условиях длительного голодания мозг использует как
источник энергии кетоновые тела. В крайних случаях такие
аминокислоты как глутамат и аспартат превращаются в
соответствующие кетокислоты, которые способны к окислению с
образованием энергии.

39. Обмен углеводов в мозге

Обмен углеводов в
эритроцитах
Эритроциты не содержат ядра, митохондрий. В эритроците не идут реакции
цикла лимонной кислоты, в них нет ферментов дыхательной цепи.
Парадоксальным является тот факт, что эритроцит, перенося кислород для
тканей, сам его не использует и получает энергию за счет аэробных
процессов.
Основным процессом в эритроцитах, который дает энергию, является
анаэробный гликолиз. При расщеплении фру-6-фф образуется НАДН,
необходимый для восстановления избытка метгемоглобина (окисленной
формы гемоглобина, не связывающей О2).
Побочным продуктом гликолиза в эритроцитах является 2,3дифосфоглицерат. 2,3-дифосфоглицерат связывается с гемоглобином,
уменьшает его сродство к О2 и, облегчает освобождение кислорода в тканях.
Пентозофосфатный путь в норме составляет лишь небольшую долю в
катаболизме глюкозы. В условиях повышенной потребности в НАДФН этот
процесс активизируется. НАДФН необходим для того, чтобы поддерживать
внутриклеточный восстановитель, глутатион, в его восстановленной SHформе. Воздействие агентов, ускоряющих окисление глутатиона в S-S-форму,
активирует реакции пентозофосфатного пути, которые обеспечивают
образование восстановленных эквивалентов в форме НАДФН+Н+.

40. Обмен углеводов в мозге

Особенности обмена глюкозы
в клетках опухoли
В клетках опухоли отмечается повышенная активность гексокиназы,
что приводит к быстрому поглощению и окислению глюкозы.
Опухолевая клетка является насосом, который выкачивает глюкозу из
кровотока. В условиях быстро растущей опухоли система кровеносных
сосудов отстает от роста опухоли и в таких клетках протекает
анаэробный гликолиз, который и дает энергию для роста клеток.
Выход энергии при анаэробном гликолизе составляет 2 моль АТФ и
поэтому процесс должен идти с большой скоростью, чтобы обеспечить
клетки опухоли энергией. Вследствие быстрого окисления глюкозы
возникает гипогликемия. Возникновение гипогликемии вызывает
ускорение глюконеогенеза и глюкоза начинает синтезироваться из
аминокислот. Следствием синтеза глюкозы из аминокислот является
падение веса у больных и развивается раковая кахексия.
Мембранная гексокиназа – работает как насос.
Гипогликемия.
Анаэробный гликолиз.
«Принудительный» глюконеогенез.
Раковая кахексия.

Глюкоза - главный энергетический субстрат нервной клетки. Запасы гликогена в мозге незначительны (0.1% от массы мозга). Гликоген сосредоточен, главным образом, в астроглии. Высокая потребность в энергии при низких запасах гликогена ставит нервные клетки в прямую зависимость от доставки глюкозы из крови. Из 8.9 мг глюкозы, окисленной в мозге, в сосудистое русло возвращается 1.2 мг лактата и 0.1 мг пировиноградной кислоты. Это свидетельствует о том, что основным способом окисления глюкозы является аэробное окисление. Активность гексокиназы в мозге почти в 20 раз превышает таковую в других тканях. Этот фермент прочно связан с митохондриями и в сравнении с гексокиназами мышц и печени имеет более высокое сродство к глюкозе. Подобно другим тканям, в мозге фосфофруктокиназа является основным ключевым ферментом, активность которого определяет скорость потребления глюкозы. Активаторами фермента являются фруктозо-6-фосфат, АДФ, АМФ, а ингибиторами - продукты реакции, АТФ и лимонная кислота. Перечисленные вещества позволяют осуществлять регуляцию расходования глюкозы в соответствии с метаболическими потребностями клетки.

Ферменты гликолиза расположены не только в теле нейрона, но находятся и в нервных окончаниях, где обеспечивают энергией работу синапсов. Во время роста и развития мозга довольно значительная доля глюкозы окисляется по пентозофосфатному пути. НАДФН + , образуемый в этом процессе, используется в реакциях синтеза холестерола, жирных кислот и в механизмах антиоксидантной защиты.

Потребность в глюкозе довольно высокая. В спокойном состоянии мозг потребляет около 5 мг глюкозы в мин на 100 г массы мозга. В обычных условиях эта потребность удовлетворяется, однако гипогликемия вызывает нарушения функции клеток мозга. Это выражается в потере сознания и судорогах. При голодании в первые часы происходит мобилизация глюкозы из депо, затем уровень глюкозы в крови поддерживается благодаря глюконеогенезу. В более поздние сроки (1 неделя) голодания в качестве источника энергии нервные клетки могут использовать кетоновые тела. Инсулин не оказывает прямого влияния на потребление глюкозы клетками мозга.

Особенности обмена белков и аминокислот

Поступление аминокислот из крови в клетки мозга зависит от особенностей клеток и от гемато-энцефалического барьера. Способность клеток нервной ткани к накоплению аминокислот ограничена. В мозге имеется несколько самостоятельных зависимых от ионов натрия транспортных систем для отдельных групп аминокислот: две системы для транспорта нейтральных аминокислот и отдельные системы для транспорта кислых и основных аминокислот. Преобладающими аминокислотами в клетках нервной ткани (75% от всех аминокислот) являются глутаминовая и аспарагиновая кислоты и их производные (N-ацетиласпарагиновая, глутамин, глутатион) и ГАМК. В более высокой концентрации в мозге, по сравнению с другими клетками, находятся таурин (для него даже есть специальная система транспорта), цистатионин. Некоторые аминокислоты мозга выполняют функции нейромедиаторов (глицин, глутаминовая кислота) или используются для их синтеза (тирозин - для дофамина и норадреналина, триптофан - для серотонина, глутаминовая кислота - для ГАМК).

Некоторые реакции обмена аминокислот в мозге с участием дикарбоновых аминокислот показаны на рис.18.5. Как известно, ГАМК образуется путем декарбоксилирования глутаминовой кислоты. В головном и спинном мозге она находится в больших концентрациях. ГАМК может подвергаться переаминированию с a-кетоглутаратом с образованием янтарного полуальдегида и глутаминовой кислоты. Первый окисляется до сукцината, который включается в цикл трикарбоновых кислот. Это так называемый “шунт ГАМК“. Через него проходит до 20% -кетоглутаровой кислоты мозга. Глутаминовая кислота занимает центральное место в обмене аминокислот мозга.

Рис. 18.5. Обмен аминокислот в мозге

В мозге открыта активность почти всех ферментов синтеза мочевины (кроме карбомоилфосфат синтетазы). Поэтому образование мочевины в мозге не происходит.

Нарушение поступления и обмена аминокислот вызывает значительные изменения функций.

Особенности образования аммиака

Аммиак образуется в мозге, главным образом, при участии аденилатдезаминазы (рис. 18.6). Атом азота аминокислоты через систему глутамат - аспартат попадает в аденилат (АМФ), который и дезаминируется. Аммиак оказывает токсическое действие на функции нейронов. Это связано с особенностями механизмов его обезвреживания в нервной ткани. Основное место в обезвреживании аммиака занимают реакции образования глютамина. В этом процессе принимают участие глутаматдегидрогеназа и глутаминсинтетаза. В качестве исходного субстрата для образования глутамина используется важный промежуточный продукт цикла трикарбоновых кислот - -кетоглутаровая кислота. Считается, что при увеличении концентрации аммиака в крови значительная часть этой кислоты используется для связывания аммиака. В результате происходит “утечка” субстратов из цикла трикарбоновых кислот. Это, в свою очередь, нарушает процессы окисления и ухудшает энергообеспеченность нервных клеток.

Рис.18.6. Схема образования аммиака в клетках мозга

Нервная ткань характеризуется высоким содержанием РНК и довольно большой скоростью образования этих молекул. В ткани мозга содержится полный набор ферментов синтеза de novo пуриновых нуклеотидов, а синтез de novo пиримидиновых нуклеотидов невозможен из-за отсутствия карбомоилфосфатсинтетазы. Зато нуклеозиды легко проходят гемато-энцефалический барьер и могут повторно включаться в синтез нуклеотидов. Недостаток одного из ферментов, катализирующих повторное использование нуклеозидов, приводит к тяжелому нарушению функций мозга (синдром Леш-Нихана).

Особенности обмена липидов

Нервная ткань отличается высокой интенсивностью обмена липидов в период развития организма и относительной стабильностью обмена у взрослого. Как уже указывалось, скорость обновления липидов мозга довольно низкая. Длительное голодание несущественно влияет на липидный обмен нервной ткани. В молодом возрасте нервные клетки способны синтезировать холестерол, однако в последующем идет постепенное снижение активности гидроксиметилглутарилредуктазы, замедление и прекращение синтеза холестерола. Активное образование сложных липидов идет в период миелинизации. Врожденные нарушения обмена сложных липидов сопровождаются тяжелыми нарушениями функций мозга (см. главу "Обмен липидов").

Метаболические взаимоотношения нейронов и глиальных клеток

Как уже упоминалось, нервная ткань представляет сложно организованную систему клеток, причем значительную долю в ней занимают клетки нейроглии. Свыше 50% от общего числа клеток мозга приходится на долю астроцитов, что составляет около 30% всего объема мозга. Внеклеточное пространство мозга сравнительно небольшое и составляет примерно 10% общего объема мозга. Поэтому незначительные изменения объема клеток и прежде всего астроглии, влекут за собой значительные изменения количества компонентов внеклеточного пространства, что может оказывать существенное влияние на функции нервных клеток.

Становится очевидным, что на транспортные свойства мембран нейроглии ложится ответственность по регуляции состава и обмена внеклеточной жидкости нервной ткани. Кроме того, учитывая особенности анатомических взаимоотношений между нейроглией и нейронами, нейроглиальные клетки оказывают существенное влияние на процессы транспорта метаболитов из крови к нейронам и обратно. К этому следует добавить, что основные запасы гликогена также сосредоточены в нейроглии, что еще больше подчеркивает ее важность в трофике нейронов.

Между нейронами и астроцитами происходит активный обмен информацией, поскольку нейроглиальные клетки способны синтезировать и секретировать разнообразные факторы роста и медиаторы, причем нейроглия разных отделов мозга секретирует разные соединения. Например, энкефалины образуются нейроглией мозжечка, коры мозга, гипоталамуса в ответ на стимуляцию их -рецепторов, а соматостатин образуется в нейроглии мозжечка, но не коры или полосатого тела. Астроциты могут синтезировать фактор роста нервов, инсулино-подобные факторы роста. Кроме того, мембраны астроцитов имеют рецепторы, позволяющие им реагировать на медиаторы нейронов. Среди такого рода рецепторов можно назвать, кроме упомянутых выше - адренорецепторов, также рецепторы к аминокислотам, в частности, ионо- и метаботропные глутаминовые рецепторы.

Известно, что, в отличие от ацетилхолина, избыток которого разрушается специфическим ферментом ацетилхолинэстеразой, глутаминовая кислота не имеет такого рода ферментов, и ее уровень в синаптической щели поддерживается благодаря специальным транспортным системам в мембране астроцитов. Описаны три транспортные системы для ГЛУ в астроцитах: Na + -зависимое поглощение, CI - -зависимый и Са 2+ -зависимый транспортные механизмы.

В области синаптической передачи с использованием глутаминовой кислоты медиатор взаимодействует не только с пре- и постсинаптическими мембранами, но и с мембранами отростков астроглиальных клеток, окружающих эту синаптическую область, на которых и расположены рецепторы к ГЛУ.

Активирование ионотропных ГЛУ- рецепторов открывает ионные каналы, что вызывает перенос ионов натрия внутрь клеток и обратный транспорт ионов калия. Это ведет к повышению количества ионов калия вне клеток и, в свою очередь, может привести к деполяризации пресинаптических терминалей и, в некоторых условиях, к дальнейшему высвобождению ГЛУ. В последующем повышенный уровень внеклеточного калия может оказать влияние на постсинаптическую передачу путем деполяризации нейронов и астроцитов. Опосредованная калием деполяризация постсинаптических мембран повышает нейрональную возбудимость. Внеклеточный калий, высвобождаемый при деполяризации нейронов, накапливается в клетках астроглии. Изменение уровня внеклеточного калия, высвобождаемого из нейронов, поглощение калия астроцитами и, таким образом, перераспределение ионов лежат в основе одного из путей, по которому астроглия и нейроны могут общаться между собой. Следует помнить о том, что астроциты обладают зависимым от калия и независимым от кальция механизмом высвобождения ГЛУ. Последний, в свою очередь, может оказать влияние на нейрональные ГЛУ рецепторы, образуя основу для контроля возбудимости нейронов.

Стимуляция метаботропных ГЛУ-рецепторов астроцитов ведет к активированию инозитольной системы внутриклеточных посредников, в результате чего повышается уровень внутриклеточного кальция. Это вызывает изменение активности многих Ca-зависимых регуляторных систем клетки. Астроглиальная активация ГЛУ рецепторов инициирует опосредованную кальцием передачу сигналов по щелевым контактам. Эта сигнальная система позволяет использовать внутриклеточные медиаторы для передачи сообщений, которые проводятся через глиальные клетки.

С влиянием ионов кальция связывают также и изменения объема астроцитов. Важное место в этом процессе отводится карбоангидразе, активность которой в 150-200 раз превышает таковую в нейронах. Под влиянием этого фермента происходит образование угольной кислоты, которая диссоциирует, и продукты диссоциации выводятся из клетки при участии Na + /H + и Cl - /HCO 3 - переносчиков. Такой обмен приводит к накоплению NaCl, повышению осмолярности внутри клеток и набуханию астроцитов. Набухание приводит к уменьшению объема внеклеточного пространства. Изменения объема клеток, зависимые от действия регуляторов и последовавшее за этим изменение внеклеточного пространства может регулировать локальные концентрации нейромедиаторов, метаболитов и факторов роста в отдельных областях мозга.

Предполагается, что система нейрон - астроглия может регулировать и микроциркуляцию в мозге. Анатомия астроглиальных клеток такова, что одна клетка может контактировать с несколькими синаптическими областями, с другими астроцитами и поддерживать контакты с капиллярами. Кандидатом в исполнители такой кооперации может быть оксид азота. ГЛУ стимулирует образование астроцитами NO, который способен увеличивать скорость кровотока.

Метаболические основы электрогенеза.
Метаболизм медиаторов в норме и при патологии.
Роль антиоксидантов, антигипоксантов, протекторов мембран.

В этом подразделе мы будем исходить из того, что читатель уже имеет представление об основах нейрофизиологии и нейроанатомии. Поэтому мы обсудим группу заболеваний, в механизме развития которых отчетливо просматриваются биохимические аспекты: миастению гравис, инсульт, заболевания, развившиеся вследствие мутаций в митохондриальной ДНК, синдром ломкой Х-хромосомы и другую патологию, обусловленную повтором триплетов в ДНК, болезнь Паркинсона, болезнь Альцгеймера и шизофрению.

Все названные нервно-психические расстройства характеризуются хроническим течением и нарушением интеллектуальных функций, приводящим к деградации личности. Примечательные данные приводит Национальный фонд исследования мозга (США). Только в этой стране прямые затраты на заболевания, связанные с расстройством функций мозга (психиатрические, неврологические, алкоголизм и др.), составляют более 401 млрд долларов в год или 1/7 всех расходов на здравоохранение США.

Функции мозга в большой степени зависят от глюкозы. Если в крови, поступающей в мозговую ткань, концентрация глюкозы снижается в два раза в сравнении с нормой, то наступает потеря сознания и через несколько минут смерть. Основной путь использования глюкозы – аэробное окисление. С этим связана высокая чувствительность мозга к гипоксии. АТФ образуется в основном в окислительном фосфорилировании и используется в электрохимических и синтетических процессах. ПФЦ осуществляется с меньшей интенсивностью, чем аэробное окисление. Часть промежуточных продуктов окисления глюкозы используется для образования медиаторов (ацетилхолина, ГАМК), а также для резервирования ацетильного остатка в виде ацетиласпартата.

Нарушения углеводного обмена

Нарушения гидролиза и всасывания углеводов

Всасывание углеводов нарушается при недостаточности амилолитических ферментов желудочно-кишечного тракта (амилаза панкреатического сока и др.). При этом поступающие с пищей углеводы не расщепляются до моносахаридов и не всасываются. Развивается углеводное голодание.

Всасывание углеводов страдает также при нарушении фосфорилирования глюкозы в кишечной стенке, возникающем при воспалении кишечника, при отравлении ядами, блокирующими фермент гексокиназу (флоридзин, монойодацетат). Не происходит фосфорилирования глюкозы в кишечной стенке и она не поступает в кровь.

Всасывание углеводов особенно легко нарушается у детей грудного возраста, у которых еще не вполне сформировались пищеварительные ферменты и ферменты, обеспечивающие фосфорилирование и дефосфорилирование.

Гликогеновые болезни

- группа наследственных нарушений, в основе которых лежит снижение или отсутствие активности ферментов, катализирующих реакции синтеза или распада гликогена, либо нарушение регуляции этих ферментов.

1. Гликогенозы - заболевания, обусловленные дефектом ферментов, участвующих в распаде гликогена. Они проявляются или необычной структурой гликогена, или его избыточным накоплением в печени, сердечной или скелетных мышцах, почках, лёгких и других органах. В таблице 7-3 описаны некоторые типы гликогенозов, различающихся характером и локализацией ферментного дефекта.



Болезнь Гирке (тип I) отмечают наиболее часто. Описание основных симптомов этого типа гликогеноза и их причин может служить основанием для понимания симптомов всех остальных типов. Причина этого заболевания - наследственный дефект глюкозо-6-фосфатазы - фермента, обеспечивающего выход глюкозы в кровоток после её высвобождения из гликогена клеток печени. Болезнь Гирке проявляется гипогликемией, гипертриацилглицеролемией (повышением содержания триацилглицеролов), гиперурикемией (повышением содержания мочевой кислоты).

Гипогликемия - следствие нарушения реакции образования свободной глюкозы из глюкозо-6-фосфата. Кроме того, вследствие дефекта глюкозо-6-фосфатазы происходит

накопление в клетках печени субстрата - глюкозо-6-фосфата, который вовлекается в процесс катаболизма, где он превращается в пируват и лактат. В крови повышается количество лактата, поэтому возможен ацидоз. В тяжёлых случаях результатом гипогликемии могут быть судороги. Гипогликемия сопровождается уменьшением содержания инсулина и снижением отношения инсулин/глюкагон, что, в свою очередь, ведёт к ускорению липолиза жировой ткани в результате действия глюкагона и выходу в кровь жирных кислот.

Гипертриацилглицеролемия возникает в результате снижения активности ЛП-липазы жировой ткани - фермента, активируемого инсулином и обеспечивающего усвоение ТАГ клетками жировой ткани.

Гиперурикемия возникает в результате следующих событий:

увеличиваются содержание в клетках глюкозо-6-фосфата и его использование в пентозофосфатном пути с образованием рибозо-5-фосфата - субстрата для синтеза пуриновых нуклеотидов;

увеличивается образование мочевой кислоты вследствие избыточного синтеза, а следовательно, и катаболизма пуриновых нуклеотидов, конечным продуктом которого является мочевая кислота.

снижается выведение мочевой кислоты вследствие увеличения продукции лактата и изменения рН мочи в кислую сторону, что затрудняет выведение уратов - труднорастворимых солей мочевой кислоты.

При диагностике данной патологии определяют активность глюкозо-6-фосфатазы в био-птатах печени. Кроме того, используют тест со стимуляцией глюкагоном или адреналином, который в случае болезни даёт отрицательный результат, т.е. после инъекции гормона уровень глюкозы в крови изменяется незначительно.

Лечение состоит в ограничении употребления продуктов, содержащих глюкозу. Рекомендуется исключить из диеты продукты, содержащие сахарозу и лактозу, так как образующиеся из них галактоза и фруктоза после превращения в глюкозо-6-фосфат ведут к дальнейшему накоплению гликогена. Для предотвращения гипогликемии используют метод частого кормления. Этим можно предупредить симптомы гипогликемии.

Гликогеноз I типа наследуется по аутосомно-рецессивному типу. Уже в раннем периоде наиболее заметный признак - гепатомегалия. У больных детей короткое туловище, большой живот, увеличены почки. Больные дети отстают в физическом развитии.

Описанное заболевание иногда обозначают как гликогеноз типа Iа, так как существует его разновидность - тип Ib. Гликогеноз Ib представляет собой редко встречающуюся патологию, которая характеризуется тем, что дефектен фермент транслоказа глюкозо-6-фосфата, обеспечивающий транспорт фос-форилированной глюкозы в ЭР. Поэтому, несмотря на достаточную активность глюкозо-6-фосфатазы, отщепление неорганического фосфата и выход глюкозы в кровь нарушен. Клиническая картина гликогеноза типа Ib такая же, как при гликогенозе Iа.

Болезнь Кори (тип III) весьма распространена. Она составляет 1/4 всех случаев печёночных гликогенозов. Накапливаемый гликоген аномален по структуре, так как дефектен фермент амило-1,6-глюкозидаза, гидролизующий гликозидные связи в местах разветвлений ("деветвящий фермент", от англ, debmnching enzyme). Недостаток глюкозы в крови проявляется быстро, поскольку гликогенолиз возможен, но в незначительном объёме. В отличие от гликогеноза I типа, лактоацидоз и гиперурикемия не отмечаются. Болезнь отличается более лёгким течением.

Болезнь Андерсен (тип IV) - крайне редкое аутосомно-рецессивное заболевание, возникающее вследствие дефекта ветвящего фермента - амило-1,4-1,6-глюкозилтрансферазы. Содержание гликогена в печени не сильно увеличено, но структура его изменена, и это препятствует его распаду. Молекула гликогена имеет мало точек ветвления, а также очень длинные и редкие боковые ветви. В то же время гипогликемия выражена умеренно. Болезнь развивается быстро, отягощается ранним циррозом печени и практически не поддаётся лечению. Дефект фермента ветвления обнаруживается не только в печени, но также в лейкоцитах, мышцах, фибробластах, на ранние и преобладающие проявления болезни обусловлены нарушением функции печени.

Болезнь Херса (тип VI) также проявляется симптомами, обусловленными поражением печени. Данный гликогеноз - следствие дефекта гликогенфосфорилазы. Б гепатоцитах накапливается гликоген нормальной структуры. Течение болезни сходно с гликогенозом I типа, но симптомы выражены в меньшей степени. Сниженная активность гликогенфосфорилазы обнаруживается также в лейкоцитах. Болезнь Херса - редкий тип гликогеноза; наследуется по аутосомнорецессивному типу.

Дефект киназы фосфорилазы (тип IX) встречается только у мальчиков, так как этот признак сцеплен с Х-хромосомой.

Дефект протеинкиназы А (тип X) , так же как и дефект киназы фосфорилазы, проявляется симптомами, сходными с болезнью Херса.

Мышечные формы гликогенозов характеризуются нарушением в энергоснабжении скелетных мышц. Эти болезни проявляются при физических нагрузках и сопровождаются болями и судорогами в мышцах, слабостью и быстрой утомляемостью.

Болезнь МакАрдла (тип V) - аутосомнорецессивная патология, при которой полностью отсутствует в скелетных мышцах активность гликогенфосфорилазы. Поскольку активность этого фермента в гепатоцитах нормальная, то гипогликемия не наблюдается (строение фермента в печени и мышцах кодируются разными генами). Тяжёлые физические нагрузки плохо переносятся и могут сопровождаться судорогами, однако при физических нагрузках гиперпродукция лактата не наблюдается, что подчёркивает значение внемышечных источников энергии для сокращения мышц, например, таких как жирные кислоты, замещающие при данной патологии глюкозу (см. раздел 8). Хотя болезнь не сцеплена с полом, большая частота заболевания характерна для мужчин.

Дефект фосфофруктокиназы характерен для гликогеноза VII типа. Больные могут выполнять умеренные физические нагрузки. Течение болезни сходно с гликогенозом V типа, но основные проявления менее выражены.

Дефект фосфоглщеромугазы и дефект М-субъединицы ЛДГ (ненумерованные по классификации Кори, см. табл. 7-3) характерны для мышечных форм гликогенозов. Проявления этих патологий аналогичны болезни МакАрдла. Дефект фосфоглицеромутазы в мышцах описан только у одного больного.

Агликогенозы

Агликогеноз (гликогеноз 0 по классификации) - заболевание, возникающее в результате дефекта гликогенсинтазы. В печени и других тканях больных наблюдают очень низкое содержание гликогена. Это проявляется резко выраженной гипогликемией в постабсорбтивном периоде. Характерный симптом - судороги, проявляющиеся особенно по утрам. Болезнь совместима с жизнью, но больные дети нуждаются в частом кормлении.

Таблица 1. Характеристика некоторых гликогеновых болезней